По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65

Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35

Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: www.kreit.pro-solution.ru || эл. почта: krt@pro-solution.ru телефон: 8 800 511 88 70

Генератор тока ГТ-72 Руководство по эксплуатации Т10.00.72 РЭ

www.kreit.pro-solution.ru

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65

Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: www.kreit.pro-solution.ru || эл. почта: krt@pro-solution.ru телефон: 8 800 511 88 70

СОДЕРЖАНИЕ

1 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
2 ОПИСАНИЕ ПРИБОРА И ПРИНЦИПОВ ЕГО РАБОТЫ	5
2.1 Назначение изделия	5
2.2 Технические характеристики	
2.3 Устройство и работа прибора	7
2.4 Состав изделия и комплектность	
3 ПОДГОТОВКА ПРИБОРА К РАБОТЕ	12
3.1 Подключение	12
3.2 Настройка прибора	13
4 ПОРЯДОК РАБОТЫ	
5 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	15
6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ТЕКУЩИЙ РЕМОН	IT 16
6.1 Ремонт	16
6.2 Сведения о рекламациях	16
7 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	17
7.1 Транспортирование	17
7.2 Хранение	17
8 ТАРА И УПАКОВКА	
9 МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ	
10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	18
11 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	18
12 ДВИЖЕНИЕ ПРИБОРА ПРИ ЭКСПЛУАТАЦИИ	
13 УТИЛИЗАЦИЯ	19
ПРИЛОЖЕНИЕ А – Перечень нормативных и технических д	цокументов,
на которые даны ссылки в РЭ	

Настоящее руководство распространяется на Генератор тока ГТ-72 (далее – ГТ или прибор) с версией программного обеспечения 01.

Эксплуатационная документация на ГТ состоит из настоящего руководства по эксплуатации, совмещенного с формуляром.

По устойчивости и прочности к воздействию условий окружающей среды и механических нагрузок ГТ соответствует исполнениям С3, P1, V1 по ГОСТ Р 52931.

Разрешение Федеральной службы по экологическому, технологическому и атомному надзору (Ростехнадзор) № РРС 00-048410 на применение оборудования на опасных производственных объектах вне взрывоопасных зон.

Все записи в настоящем документе производят только чернилами отчетливо и аккуратно.

При вводе прибора в эксплуатацию необходимо отметить дату ввода прибора в эксплуатацию.

Эксплуатирующая организация несёт ответственность за ведение записей во время эксплуатации и хранения изделия. Рекламации на прибор с незаполненным руководством по эксплуатации не принимаются, гарантийный ремонт не производится, гарантийные обязательства аннулируются.

1 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 1.1 ГТ соответствует требованиям безопасности по ГОСТ Р 51350.
- 1.2 ГТ обеспечивает защиту человека от поражения электрическим током по классу III ГОСТ 12.2.007.0.
- 1.3 К работе с прибором на этапе его настройки и монтажа должны допускаться лица, имеющие образование не ниже среднего технического, прошедшие инструктаж по технике безопасности при работе с установками напряжением до 1000 В, ознакомленные с настоящим Руководством по эксплуатации и умеющие пользоваться программой настройки прибора на ЭВМ IВМ/РС. В процессе эксплуатации прибора никакого дополнительного обслуживания не требуется.
 - 1.4 Любые подключения производить только при отключенном питании.
- 1.5 До ответственного органа должно быть доведено, что обеспечиваемая прибором защита может быть неэффективной, если прибор эксплуатируют способом, не указанным изготовителем.

2 ОПИСАНИЕ ПРИБОРА И ПРИНЦИПОВ ЕГО РАБОТЫ

2.1 Назначение изделия

ГТ предназначен для работы в составе системы ТЭКОН-20 и осуществляет формирование двух независимых друг от друга, изолированных токовых сигналов ГТ0 и ГТ1 в соответствии с заданными входными параметрами и внутренними уставками. Необходимые для преобразования входные величины запрашиваются по информационной магистрали CAN-BUS. В качестве входных величин могут выступать любые параметры других модулей системы ТЭКОН-20, хранящиеся в форме с плавающей запятой. Данные параметры могут быть как измеренными величинами физических характеристик внешнего объекта, так и рассчитанными или внутренними параметрами модулей – участников обмена.

2.2 Технические характеристики

- $2.2.1~\Gamma T$ выпускается в двух исполнениях -01 и -02, формирующих величины выходных токов в диапазонах 0-5мА и 0-20мА соответственно. Для исполнения -02 при настройке может быть программно задан диапазон 4-20мА.
- 2.2.2 Пределы допускаемой приведенной погрешности формирования тока \pm 0,5%, при нормирующем значении, равном верхнему значению диапазона.
- 2.2.3 ГТ выполнен в пластмассовом корпусе фирмы Railtec со стандартным креплением на DIN-рейке. Внешний вид представлен на рисунке 2.1.
- 2.2.4 Питание ГТ осуществляется от внешнего источника постоянного тока, напряжением 18–36 В. Потребляемая мощность не более 0,5 Вт.

Лист 6 Т10.00.72 РЭ

- 2.2.5 Изоляция выходных цепей токовых сигналов относительно цепей интерфейса CAN-BUS и относительно цепей питания выдерживает в течение 1 минуты воздействие испытательного напряжения практически синусоидальной формы амплитудой 1000В, частотой от 45 до 65 Гц, при нормальных климатических условиях.
- 2.2.6 ГТ устойчив и прочен к воздействию температуры и влажности окружающего воздуха по группе исполнения В4 ГОСТ Р 52931.
- 2.2.7 ГТ устойчив и прочен к воздействию атмосферного давления по группе исполнения Р1 ГОСТ Р 52931.
- 2.2.8 ГТ устойчив и прочен к воздействию механических нагрузок по группе исполнения L1 ГОСТ Р 52931.
- 2.2.9 По степени защищенности от проникновения воды и внешних твердых предметов прибор соответствует степени защиты IP20 по ГОСТ 14254.
- 2.2.10 ГТ прочен к воздействию климатических факторов и механических нагрузок в транспортной таре при транспортировании автомобильным и железнодорожным транспортом, а также авиатранспортом в герметизированных и отапливаемых отсеках, по ГОСТ Р 52931.
 - 2.2.11 Габаритные размеры прибора не превышают 110х75х60 мм.
 - 2.2.12 Масса прибора не более 0.4 кг.

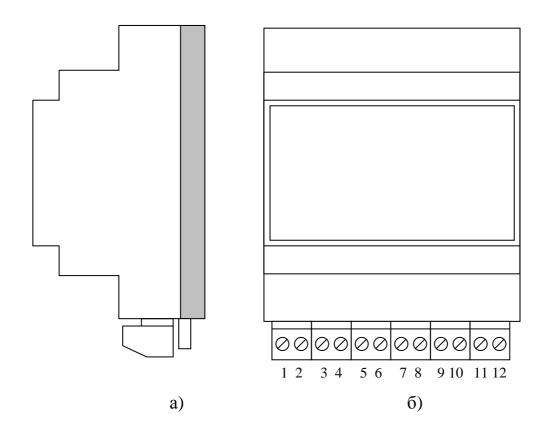


Рисунок 2.1 – Внешний вид и нумерация клемм ГТ а) вид сбоку; б) с передней панели

- 2.2.13 Средняя наработка на отказ не менее 25000 ч. Критерием отказа является несоответствие требованиям ТУ 4217-022-44147075-12.
- 2.2.14 Средний срок службы не менее 10 лет. Критерием предельного состояния является превышение затрат на ремонт свыше 50 % стоимости нового прибора.
- 2.2.15 Среднее время восстановления работоспособного состояния не более 4 ч.
- 2.2.16 Прибор выполняет следующие функции (более подробно о них см. 2.3.6):
- Инициирует обмен по магистрали CAN-BUS по заранее запрограммированной конфигурации с целью получения требуемых параметров.
- Преобразует полученные данные в соответствии с предустановленным типом генератора тока и приводит величину полученного результата к желаемому масштабу сигнала.
- Формирует один или два выходных токовых сигнала в соответствии с рассчитанными значениями.
- 2.2.17 ГТ обеспечивает программирование (настройку) на конкретные характеристики выходных токовых сигналов и номера входных параметров путём их задания через ПК с помощью программы «ТЕЛЕПОРТ» Т10.06.131, входящей в состав диска с ПО из комплекта поставки прибора. Подключение ПК к магистрали CAN-BUS осуществляется посредством адаптера RS232 CAN-BUS T10.00.54.
- 2.2.18 Адрес прибора на магистрали CAN-BUS, маска и константа скорости задаются при настройке в соответствии с характеристиками и требованиями системы, в составе которой он будет использоваться.

2.3 Устройство и работа прибора

- 2.3.1 Прибор состоит из управляющего микроконтроллера семейства x51, двух идентичных узлов генераторов тока, модуля CAN интерфейса, блока питания и элементов гальванической развязки. Микроконтроллер исполняет прошитую в нем программу, реализуя функции прибора. Все узлы прибора гальванически изолированы друг от друга, что повышает надежность прибора, а также уменьшает взаимное влияние отдельных узлов друг на друга. Все необходимые для питания отдельных частей прибора напряжения вырабатываются внутри адаптера из внешнего питающего напряжения 18–36 В и гальванически изолированы от него.
- 2.3.2 Вся информация, необходимая для настройки прибора и оценки его состояния в процессе эксплуатации, доступна для чтения и/или записи через магистраль обмена информацией CAN-BUS с помощью так называемой системы параметров. Каждый параметр характеризуется своим идентификатором, представляющим собой двухбайтовое четырехзначное шестнадцатиричное число вида MNPQ, своим назначением, способом доступа к параметру и внут-

Лист 8 Т10.00.72 РЭ

ренним представлением. Доступ ко всем параметрам производится с помощью специальных программ на ЭВМ.

- 2.3.3 По назначению все параметры ГТ делятся на следующие группы:
- •Заводские константы, характеризующие конструктивные особенности и электрические характеристики аппаратуры прибора. Значения констант заносятся на предприятии-изготовителе и в процессе эксплуатации не меняются.
- •Параметры настройки, обеспечивающие программирование ГТ на конкретный технологический объект. Они заносятся либо на предприятии-изготовителе по спецификации конкретного заказчика, либо потребителями перед использованием прибора на объекте. Далее в процессе эксплуатации повторная их перезапись не требуется.
- •Служебные параметры, содержащие информацию, которая может применяться для оценки правильности работы прибора и сопрягаемых устройств при эксплуатации, настройке и ремонтно-профилактических работах.
- 2.3.4 По уровню доступа параметры делятся на 4 группы, раздельно по чтению и записи:
- Уровень 3, максимальный («настройщик»), для предприятия-изготовителя. Позволены любые действия по чтению и записи.
- Уровень 2, «наладчик». Позволены действия по чтению и записи параметров на этапе ввода адаптера в эксплуатацию.
- Уровень 1, «пользователь». Минимальный уровень доступа, только по чтению в процессе эксплуатации.
- Уровень 0 доступа нет.

Программа ГТ обеспечивает доступ к параметру, если сообщенный ей от ЭВМ в данном сеансе связи код пользователя не ниже уровня доступа к данному параметру.

2.3.5 Сводный перечень параметров ГТ приведен в таблице 2.1.

Таблица 2.1

Пара- метр	Наименование	Вид *1)	Разме щение *2)	Доступ *3)
	1.1 Заводские константы			
F000	Тип модуля	Ш2	ПЗУП	20
F001	Заводской номер модуля	Ш2	ПЗУД	23
F002	Версия программы модуля	Ш1	ПЗУП	20
0105	Кус ГТО	П	ПЗУД	23
0205	Кус ГТ1	П	ПЗУД	23

Продолжение таблицы 2.1

Пара- Наименование Вид Разме	Поотт				
*1)	Доступ				
метр	*3)				
*2)					
1.2 Параметры настройки обмена					
0000 Сетевой номер основной Ш1 ПЗУД	22				
0001 Маска основная (=FF) Ш1 ПЗУД	22				
0002 Дополнительные разряды номера (=00) Ш1 ПЗУД	22				
0003 Дополнительные разряды маски (=00) Ш1 ПЗУД	22				
0004 Конфигурация и скорость (=41E0) Ш2*4) ПЗУД	22				
1.3 Параметры настройки генераторов тока					
$(i=1\ \partial$ ля $\Gamma T O,\ i=2\ \partial$ ля $\Gamma T 1)$					
0і00 Номер внешнего модуля Ш1 ПЗУД	12				
0і01 Номер вводимого параметра Ш2 ПЗУД	12				
0і02 Заданный период ввода, секунд (1-255) Д1 ПЗУД	22				
0і03 Заданное время удержания параметра, Д1 ПЗУД	22				
периодов ввода (1-255)					
0і04 Тип ГТ ((0-20)/(0-5)мА или 4-20мА) Ш1 ПЗУД	22				
0i06 Начало шкалы ГТ (Pmin) П ПЗУД	12				
0і07 Конец шкалы ГТ (Ртах) П ПЗУД	12				
1.4 Параметры контроля генераторов тока					
$(i=1\ \partial$ ля $\Gamma TO,\ i=2\ \partial$ ля $\Gamma T1)$					
0і08 Значение введенного параметра Р П ОЗУ	12				
0i09 Масштабированное значение X (0.0 1.0) П ОЗУ	22				
0і0А Код Ү, выдаваемый в ГТ Ш2 ОЗУ	22				
0і0В Не принят параметр бит ОЗУ	12				
0і0С Текущее время ввода, с Д1 ОЗУ	22				
0i0D Текущее время удержания, периодов вво- Д1 ОЗУ	22				
да					
1.5 Тестовые и контрольные параметры					
0300 Отказы Ш1*5) ОЗУ	10				
0301 Запрет ввода параметра для ГТО бит ОЗУ	22				
0302 Запрет ввода параметра для ГТ1 бит ОЗУ	22				
0303 Запрет преобразования параметра для ГТО бит ОЗУ	22				
0303 Запрет преобразования параметра для ГТ1 бит ОЗУ	22				
0304 Адрес окна Ш2 ОЗУ	22				
0305 Содержимое окна Ш1 ОЗУ	22				

Лист 10 Т10.00.72 РЭ

Продолжение таблицы 2.1

Пара-	Наименование	Вид	Разме	Доступ
метр		*1)	щение *2)	*3)
			2)	

ПРИМЕЧАНИЯ:

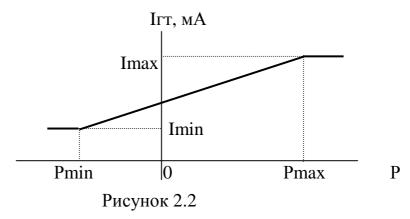
- 1. П число с плавающей запятой; III шестнадцатеричное число, Д десятичное число. Цифра обозначает число байт во внутреннем представлении числа. Числа с плавающей запятой имеют формат стандарта IEEE-754 (короткие вещественные числа, 4 байта).
- 2. ПЗУД, ПЗУП репрограммируемая память данных и программ соответственно; ОЗУ внутренняя оперативная память.
- 3. Первая цифра обозначает уровень доступа на чтение, вторая на запись: 0 операции нет, 1 пользователь, 2 наладчик, 3 настройщик (см. 2.3.4).
- 4. Требуемые коды приведены в таблице 2.2
- 5. Шестнадцатеричное двухбайтовое число, двоичные разряды которого являются признаками исправности (состояние «0») или неисправности (состояние «1»):
 - разряд 0 не принят параметр для ГТО
 - разряд 1 не принят параметр для ГТ1
 - разряды с 2 по 6 не используются
 - разряд 7 неверна контрольная сумма области настроек в ПЗУД.

Таблица 2.2 - требуемые коды параметра 0004

Скорость, кБод	Код параметра 0004
300	41E0
150	43E0
100	45E0
50	4BE0
20	5DE0

- 2.3.6 После включения питания запускается основная программа работы прибора. Она работает циклически, выполняя независимо для каждого из генераторов тока ГТ0 и ГТ1 следующие операции:
- 2.3.6.1 По прохождении заданного времени инициируется запрос в CAN BUS на чтение заданного параметра из внешнего модуля с заданным номером и, при нормальной работе, в ответ приходит значение параметра Р.

2.3.6.2 Принятое значение параметра P масштабируется по формуле:
$$X = (P - Pmin)/(Pmax - Pmin),$$
 (2.1)


где Pmin – установленное при настройке «начало шкалы ГТ», т.е. значение параметра, соответствующее минимальному выходному току Imin;

Ртах – установленный при настройке «конец шкалы ГТ», т.е. значение параметра, соответствующее максимальному выходному току Imax;

Р – реальное значение введенного параметра;

X – масштабированное значение параметра.

В общем случае параметры P, Pmin и Pmax могут иметь произвольные знаки, но в любом случае при настройке должно выполняться алгебраическое условие Pmin < Pmax. Формула (2.1) иллюстрируется рисунком 2.2.

2.3.6.3 Масштабированное значение параметра X ограничивается в пределах от 0.0 до +0.99999 и преобразуется в двенадцатиразрядный двоичный код (т.е. трехразрядный шестнадцатиричный код) Y. Код 0000 соответствует нулевому значению выходного тока, код 0FFF соответствует максимальному току Imax (5мА или 20мА). Для генератора тока, настроенного на диапазон 4-20мА, минимальное значение кода составляет 1/5 от максимального, т.е. равно 0333. При формировании кода учитывается заводская константа — коэффициент усиления генератора тока Кус, который в общем случае может незначительно отличаться от единицы. Формирование кода выполняется по формуле:

$$Y =$$
 $\begin{cases} int(Kyc*(4096*X)) & \text{для } \Gamma T \text{ c Imin=0} \\ int(Kyc*(3276.8*X + 819.2)) & \text{для } \Gamma T \text{ c Imin=4MA} \end{cases}$ (2.2)

где int - функция выделения целой части числа.

- 2.3.6.4 Вычисленное значение кода Y выдается в узел формирования выходного тока.
- 2.3.6.5 Если на запрос в CAN BUS не получен ответ, вырабатывается битовый признак «не принят параметр», который при необходимости доступен для контроля через систему параметров. Значение параметра Р, полученное при последнем удачном обмене, удерживается в течение заданного при настройке количества периодов ввода; при этом значение выходного тока ГТ не изменяется. Если связь не восстановилась, по истечении заданного периода параметру Р присваивается большое отрицательное значение, что обеспечивает формирование на выходе ГТ значения тока Imin.

2.4 Состав изделия и комплектность

Комплект поставки ГТ приведен в таблице 2.3.

Таблица 2.3 - комплект поставки

	~ ~	Количество	
Наименование	Обозначение	По ТУ	Факт.
Генератор тока ГТ-72	T10.00.72	1	1
Руководство по эксплуатации	Т10.00.72 РЭ	1	1
Диск Генератора тока ГТ-72	T10.06.176	1	1

ПРИМЕЧАНИЕ: источник питания приобретается отдельно.

3 ПОДГОТОВКА ПРИБОРА К РАБОТЕ

3.1 Подключение

3.1.1 Магистраль CAN-BUS, источники питания прибора и цепи генераторов токов подключаются к разъемным клеммам под винт, расположенным снизу в торцевой панели. Дополнительно под клеммой магистрали CAN-BUS находится перемычка TRM для подключения согласующего резистора. Перемычки на три положения также расположены под каждой четверкой клемм генераторов тока. Данные перемычки предоставляют возможность конфигурирования выходов каждого из генераторов в активное или пассивное состояние. В случае активного состояния генератор является источником тока, и к его выходу можно подключить пассивную нагрузку (токоизмерительный резистор КСП). В случае пассивной конфигурации генератор является формирователем тока и требует питания токовой цепи извне. Расположение клемм показано на рисунке 2.1, назначение – в таблице 3.2.

Таблица 3.2 – Назначение клемм подключения внешних сигналов

Номер контакта	Наиме- нование	Назначение цепи	
1	-U_GT1	"–" внешнее питание ГТ1 20–36 B	
2	I1a	Ток ГТ1, левая клемма	
3	I1b	Ток ГТ1, правая клемма	
4	+U_GT1	"+" внешнее питание ГТ1 20–36 B	
5	-U_GT0	"-" внешнее питание ГТ0 20-36 B	
6	I0a	Ток ГТО, левая клемма	
7	I0b	Ток ГТ0, правая клемма	
8	+U_GT0	"+" внешнее питание ГТ0 20–36 B	
9	CAN L	Цепи магистрали CAN BUS	
10	CAN H	цени магистрали САН ВОЗ	
11	–U	Внешний источник питания 18–36 В	
12	+U		
_	TRM	Перемычка терминатора магистрали CAN-BUS	

- 3.1.2 Подключение к магистрали обмена информацией CAN-BUS осуществляется соединением цепей CAN L и CAN H с одноименными шинами магистрали. Если прибор подключается к самой удаленной точке магистрали, необходимо установить перемычку TRM, расположенную непосредственно под клеммной колодкой магистрали CAN-BUS. В остальных случаях перемычка не устанавливается.
- 3.1.3 Выходные схемы узлов формирователей токов гальванически изолированы от всех цепей прибора и нуждаются в собственном источнике питания нестабилизированного напряжения 20-36В. Данное напряжение также используется для формирования токового выхода в активном включении. Для достижения полной гальванической изоляции генераторов токов ГТО и ГТ1 клеммы питания внутренних схем физически разделены. Если гальваническая

развязка выходов не требуется, допустимо питание выходных цепей, и, в крайнем случае, и самого прибора, от одного источника питания напряжением 20-36В постоянного тока при условии обеспечения им мощности, достаточной для нормального функционирования всех узлов ГТ. Подключение осуществляется в соответствии с таблицей 3.2 и иллюстрируется рисунком 3.4. Установка перемычек конфигурации выходных каскадов генераторов тока на активный или пассивный режим указана на рисунке 3.3.

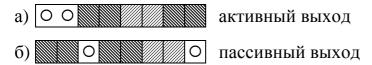


Рисунок 3.3 – установка перемычек при конфигурировании выходной схемы генератора тока (установленная перемычка заштрихована). Вид со стороны установки перемычек

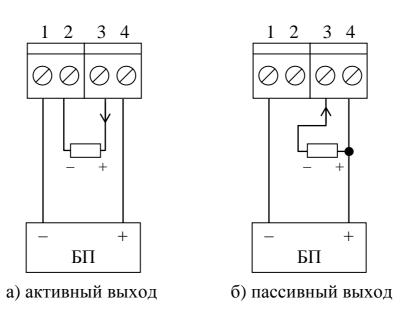


Рисунок 3.4 – схема подключения генераторов тока (номера клемм для ГТ1, измеритель тока изображен как резистор, направление тока указано стрелкой)

3.1.4 Питание — напряжение постоянного тока от внешнего источника 18–36 В подключается к клеммам «-U» и «+U» с соблюдением полярности после завершения монтажа всех остальных цепей.

3.2 Настройка прибора

- 3.2.1 Сконфигурируйте с помощью перемычек выходные схемы генераторов тока в соответствии с 3.1.3.
- 3.2.2 Остальные характеристики прибора можно откорректировать при помощи программы настройки "ТЕЛЕПОРТ" (Т10.06.131) и базы данных ГТ на персональной ЭВМ IВМ/РС. Все необходимые программы и база данных вхо-

Лист 14 Т10.00.72 РЭ

дят в состав диска с ПО из комплекта поставки прибора и позволяют произвести настройку через магистраль CAN-BUS. Настройка ГТ через магистраль CAN-BUS возможна только при наличии у заказчика действующей сети CAN-BUS, подключенной к ЭВМ.

- 3.2.3 Принципы работы с программой ТЕЛЕПОРТ в настоящем документе не описаны и должны быть изучены по входящим в состав программы функциям HELP.
- 3.2.4 Для того, чтобы ЭВМ могла связаться с прибором, его сетевой номер и скорость должны быть известны. С предприятия-изготовителя прибор поставляется с характеристиками канала обмена согласно таблице 10.1.
- 3.2.5 Настройте требуемый сетевой номер прибора для обмена по магистрали CAN-BUS через параметр 0000. Маски и константу скорости менять не рекомендуется. Константа скорости может быть изменена лишь в том случае, когда скорость обмена должна отличаться от 300 кБод.
- 3.2.6 Задайте характеристики используемых генераторов тока ГТ0 и ГТ1 по перечню параметров, приведенному в разделе «Настройки ГТ» таблицы 2.1:
- Для ГТ с диапазоном выходного тока 0-20мА параметр 0i04 «Тип ГТ» задайте равным нулю; любое ненулевое значение определяет диапазон тока 4-20мА. Если при заказе был оговорен диапазон тока 0-5мА, параметр «Тип ГТ» следует обязательно установить равным нулю.
- Зная характеристики той системы приборов, к которой подключается ГТ, через параметры настройки 0i00 и 0i01 задайте сетевые номера внешних модулей, из которых будут запрашиваться параметры, и номера запрашиваемых параметров. Если используется лишь один из двух выходов ГТ, для неиспользуемого выхода ГТ задайте параметр 0i00 «Номер внешнего модуля» равным FF. Запросы в CAN с такими номерами программно запрещены, и поэтому производиться не будут. Остальные параметры настройки неиспользуемого выхода ГТ могут иметь произвольное значение; величина его выходного тока не определена.
- Через параметры 0i06 «Начало шкалы» и 0i07 «Конец шкалы» задайте значения Pmin и Pmax. Они могут иметь произвольные знаки, но условие Pmin < Pmax должно выполняться алгебраически.
- Через параметр 0i02 «Период ввода» задайте период повторения запроса параметров, выраженный целым числом секунд в диапазоне от 1 до 255. Через параметр 0i03 «Время удержания» задайте число периодов ввода в диапазоне от 1 до 255, в течение которого при неудачных результатах считывания удерживается значение выходного тока ГТ, соответствующее последнему удачно считанному значению параметра. По истечении времени удержания ток ГТ станет равным Imin.
- 3.2.7 В случае успешного завершения записи прибор готов к работе на объекте. Если запись не выполнилась, проверьте правильность всех настроек,

правильность подключения, наличие контактов в разъемных соединениях. После этого повторите попытку записи.

3.2.8 Если многократные попытки установить связь с прибором остаются безуспешными, то, при условии исправности цепей подключения, наиболее вероятная причина неудачи — отличие реальных характеристик канала обмена от заданных. В этом случае при выключенном питании снимите верхнюю часть корпуса прибора, получив доступ к его верхней монтажной плате. Установите перемычку («джампер») на два штырька, обозначенные буквой Т (тестовая перемычка), и включите питание прибора вновь. В этом случае параметры настройки канала программой прибора игнорируются, и принудительно устанавливаются сетевой номер 00 и константа обмена 41Е0 (скорость 300кбит/с).

Запустите программу ТЕЛЕПОРТ вновь, задав чтение данных из модуля с сетевым адресом 00. Если операция выполнена успешно, то, следовательно, связь появилась. Откорректируйте настройки и запишите их в прибор. При успешном завершении записи отключите питание прибора, снимите перемычку, соберите прибор, включите питание и попробуйте связаться с ним заново, задав новые реальные характеристики канала обмена. При удачном считывании прибор готов к работе.

Если установка перемычки не помогает, обратитесь на предприятие - изготовитель ГТ.

3.2.9 Факт занесения настроек при выпуске с предприятия-изготовителя отражается в таблице 12.1.

4 ПОРЯДОК РАБОТЫ

- 4.1 ГТ после установки на объекте и подключения в соответствии с рекомендациями 3.1 является необслуживаемым промежуточным звеном системы ТЭКОН-20 и специальных действий по работе с ним не требуется.
- 4.2 Для отладочных и ремонтных операций состояние прибора может быть дополнительно оценено через его контрольные параметры, приведенные в таблице 2.1. Для этого необходимо иметь ЭВМ, подключенную к магистрали CAN-BUS, и снабженную программой обмена разработки предприятия «КРЕЙТ», например, ТЕЛЕПОРТ, и соответствующую базу данных.

5 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 5.1 Изготовитель гарантирует соответствие «Генератора тока ГТ-72» требованиям технических условий ТУ 4217-022-44147075-12 при соблюдении условий эксплуатации, транспортирования и хранения.
 - 5.2 Гарантийный срок хранения 6 месяцев с даты изготовления.
- 5.3 Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ТЕКУЩИЙ РЕМОНТ

6.1 Ремонт

Ремонт прибора производится на предприятии-изготовителе.

6.2 Сведения о рекламациях

- 6.2.1 При обнаружении неисправности прибора в период действия гарантийных обязательств, а также при обнаружении некомплектности при первичной приемке изделия, потребитель должен выслать в адрес предприятия-изготовителя письменное извещение со следующими данными:
 - заводской номер;
 - дата выпуска и дата ввода прибора в эксплуатацию;
 - характер дефекта (или некомплектности);
 - наличие у потребителя контрольно-измерительной аппаратуры для проверки прибора;
 - адрес, по которому должен прибыть представитель предприятия-изготовителя, номер телефона.
- 6.2.2 При обнаружении неисправности прибора по истечении гарантийных сроков, потребитель должен выслать в адрес предприятия-изготовителя неисправный прибор с заполненным формуляром и письменное извещение с описанием дефекта.
 - 6.2.3 E-mail: krt@pro-solution.ru
 - 6.2.4 Рекламации регистрируют в таблице 6.1.

Таблица 6.1

Пата

предъявления рекламации	Краткое содержание	Меры, принятые по рекламации

7 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

7.1 Транспортирование

Транспортирование упакованного прибора должно производиться в крытых транспортных средствах всеми видами транспорта, авиатранспортом только в герметизированных и отапливаемых отсеках.

7.2 Хранение

Хранение прибора должно производиться в соответствии с условиями хранения ОЖ4 по ГОСТ 15150.

8 ТАРА И УПАКОВКА

- 8.1 ГТ упакован в коробку из гофрокартона.
- 8.2 Перед укладкой в коробку ГТ упакован в пакет из полиэтиленовой пленки.
- 8.3 В упаковочную коробку вместе с прибором помещены принадлежности и эксплуатационная документация, уложенные в полиэтиленовый пакет.
- 8.4 В упаковочной коробке после укладки произведено уплотнение вспомогательными материалами.
- 8.5 Упаковочная коробка промаркирована манипуляционными знаками «ХРУПКОЕ» и «НЕ БРОСАТЬ».

9 МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

- 9.1 ГТ имеет следующую маркировку на лицевой панели:
 - логотип предприятия-изготовителя «КРЕЙТ»;
 - название прибора: «Модуль генераторов тока ГТ-72»;
- 9.2 ГТ имеет следующую маркировку на задней панели:
 - заводской шифр изделия;
 - заводской порядковый номер;
- 9.3 Пломбирование осуществляют на стыке лицевой панели с основанием корпуса наклеиванием этикетки с логотипом предприятия-изготовителя.

10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Генератор тока ГТ-72, исполнение, заводской номер,
соответствует требованиям технических условий ТУ 4217-022-44147075-12 и
признан годным к эксплуатации. Значения параметров настройки при выпуске
с предприятия-изготовителя приведены в таблице 10.1. Состояние остальных
параметров не определено.

Таблица 10.1

Параметр	Наименование параметра	Значение			
	Настройки общие				
F000	Тип модуля	0501			
F001	Заводской номер				
F002	Версия программы	01			
	Настройки интерфейса CAN-BUS				
0000	Сетевой номер основной	01			
0001	Маска основная	FF			
0002	Сетевой номер дополнительный	00			
0003 Маска дополнительная 00		00			
0004	0004 Конфигурация и скорость 41Е0 (300кби				
Настройки генераторов тока					
0100	Номер внешнего модуля для ГТО	FF (нет ввода)			
0200	Номер внешнего модуля для ГТ1	FF (нет ввода)			

Дата выпуска _____

Упаковку произвел _____

Представитель ОТК _____

Представитель ОТК	
11 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	
Генератор тока ГТ-72, исполнение, заводской номер кован согласно требованиям технических условий ТУ 4217-022-4414	•
Дата упаковки	

12 ДВИЖЕНИЕ ПРИБОРА ПРИ ЭКСПЛУАТАЦИИ

Таблица 12.1

По	оступил	Фамилия,	Отправлен		Фамилия,
Откуда	Номер и дата	должность и	Куда	Номер и дата	должность и
	наряда	подпись лица,		наряда	подпись лица,
		ответственного			ответственного
		за приемку			за отправку

13 УТИЛИЗАЦИЯ

- 13.1 Прибор не содержит драгоценных металлов и материалов, представляющих опасность для жизни.
- 13.2 Утилизация прибора производится отдельно по группам материалов: пластмассовые элементы, металлические крепежные элементы.

Лист 20 Т10.00.72 РЭ

ПРИЛОЖЕНИЕ A – Перечень нормативных и технических документов, на которые даны ссылки в РЭ

ГОСТ Р 52931-2008	Приборы контроля и регулирования технологических процессов. Общие технические условия
ГОСТ Р 51350-99	Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования.
ГОСТ 15150-69	Машины, приборы и другие изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.
ГОСТ 14254-96	Степени защиты, обеспечиваемые оболочками (код IP).
ГОСТ 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования безопасности.
ГОСТ 2.601-95	ЕСКД. Эксплуатационные документы.
ТУ 4217-022- 44147075-12	Контроллеры автоматики и телемеханики серии T-20. Технические условия.

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65

Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: www.kreit.pro-solution.ru || эл. почта: krt@pro-solution.ru телефон: 8 800 511 88 70